Convex Programs for Minimal-Area Problems

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient Convex Optimization for Minimal Partition Problems with Volume Constraints

Minimal partition problems describe the task of partitioning a domain into a set of meaningful regions. Two important examples are image segmentation and 3D reconstruction. They can both be formulated as energy minimization problems requiring minimum boundary length or surface area of the regions. This common prior often leads to the removal of thin or elongated structures. Volume constraints i...

متن کامل

Minimal infeasible constraint sets in convex integer programs

In this paper we investigate certain aspects of infeasibility in convex integer programs. In particular we are concerned with the problem of an upper bound for the minimal cardinality of the irreducible infeasible subset of constraints defining feasible region. We prove that for the considered class of convex functions, every infeasible system of inequality constraints in the convex integer pro...

متن کامل

Symmetric Convex Sets with Minimal Gaussian Surface Area

Let Ω ⊆ R have minimal Gaussian surface area among all sets satisfying Ω = −Ω with fixed Gaussian volume. Let A = Ax be the second fundamental form of ∂Ω at x, i.e. A is the matrix of first order partial derivatives of the unit normal vector at x ∈ ∂Ω. For any x = (x1, . . . , xn+1) ∈ R, let γn(x) = (2π)−n/2e−(x 2 1+···+x 2 n+1. Let ‖A‖ be the sum of the squares of the entries of A, and let ‖A‖...

متن کامل

Symmetric Convex Sets with Minimal Gaussian Surface Area

Abstract. Let Ω ⊆ R have minimal Gaussian surface area among all sets satisfying Ω = −Ω with fixed Gaussian volume. Let A = Ax be the second fundamental form of ∂Ω at x, i.e. A is the matrix of first order partial derivatives of the unit normal vector at x ∈ ∂Ω. For any x = (x1, . . . , xn+1) ∈ R, let γn(x) = (2π)−n/2e 2 1+···+x 2 n+1. Let ‖A‖2 be the sum of the squares of the entries of A, and...

متن کامل

Minimal Convex Decompositions

Let P be a set of n points on the plane in general position. We say that a set Γ of convex polygons with vertices in P is a convex decomposition of P if: Union of all elements in Γ is the convex hull of P, every element in Γ is empty, and for any two different elements of Γ their interiors are disjoint. A minimal convex decomposition of P is a convex decomposition Γ′ such that for any two adjac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in Mathematical Physics

سال: 2020

ISSN: 0010-3616,1432-0916

DOI: 10.1007/s00220-020-03732-1